{ "id": "0908.4323", "version": "v5", "published": "2009-08-29T06:28:53.000Z", "updated": "2009-10-05T20:22:08.000Z", "title": "A remark on partial sums involving the Mobius function", "authors": [ "Terence Tao" ], "comment": "7 pages, no figures. To appear, Bull. Aust. Math. Soc. Minor corrections", "categories": [ "math.NT" ], "abstract": "Let $<\\P > \\subset \\N$ be a multiplicative subsemigroup of the natural numbers $\\N = \\{1,2,3,...\\}$ generated by an arbitrary set $\\P$ of primes (finite or infinite). We given an elementary proof that the partial sums $\\sum_{n \\in < \\P >: n \\leq x} \\frac{\\mu(n)}{n}$ are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to $\\prod_{p \\in \\P} (1 - \\frac{1}{p})$ (the case when $\\P$ is all the primes is a well-known observation of Landau). Interestingly, this convergence holds even in the presence of non-trivial zeroes and poles of the associated zeta function $\\zeta_\\P(s) := \\prod_{p \\in \\P} (1-\\frac{1}{p^s})^{-1}$ on the line $\\{\\Re(s)=1\\}$. As equivalent forms of the first inequality, we have $|\\sum_{n \\leq x: (n,P)=1} \\frac{\\mu(n)}{n}| \\leq 1$, $|\\sum_{n|N: n \\leq x} \\frac{\\mu(n)}{n}| \\leq 1$, and $|\\sum_{n \\leq x} \\frac{\\mu(mn)}{n}| \\leq 1$ for all $m,x,N,P \\geq 1$.", "revisions": [ { "version": "v5", "updated": "2009-10-05T20:22:08.000Z" } ], "analyses": { "subjects": [ "11A25" ], "keywords": [ "partial sums", "mobius function", "prime number theorem", "well-known observation", "elementary proof" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.4323T" } } }