{ "id": "0908.4103", "version": "v1", "published": "2009-08-27T21:59:37.000Z", "updated": "2009-08-27T21:59:37.000Z", "title": "Companions of the unknot and width additivity", "authors": [ "Ryan Blair", "Maggy Tomova" ], "comment": "12 pages, 11 figures", "categories": [ "math.GT" ], "abstract": "It has been conjectured that for knots $K$ and $K'$ in $S^3$, $w(K#K')= w(K)+w(K')-2$. Scharlemann and Thompson have proposed potential counterexamples to this conjecture. For every $n$, they proposed a family of knots ${K^n_i}$ for which they conjectured that $w(B^n#K^n_i)=w(K^n_i)$ where $B^n$ is a bridge number $n$ knot. We show that for $n>2$ none of the knots in ${K^n_i}$ produces such counterexamples.", "revisions": [ { "version": "v1", "updated": "2009-08-27T21:59:37.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "width additivity", "companions", "conjecture", "potential counterexamples" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.4103B" } } }