{ "id": "0908.2909", "version": "v1", "published": "2009-08-20T11:49:16.000Z", "updated": "2009-08-20T11:49:16.000Z", "title": "Abstract intersection theory and operators in Hilbert space", "authors": [ "Grzegorz Banaszak", "Yoichi Uetake" ], "categories": [ "math.NT", "math.OA" ], "abstract": "For an operator of a certain class in Hilbert space, we introduce axioms of an abstract intersection theory, which we prove to be equivalent to the Riemann Hypothesis concerning the spectrum of that operator. In particular if the nontrivial zeros of the Riemann zeta-function arise from an operator of this class, the original Riemann Hypothesis is equivalent to the existence of an abstract intersection theory.", "revisions": [ { "version": "v1", "updated": "2009-08-20T11:49:16.000Z" } ], "analyses": { "subjects": [ "11Mxx", "11Gxx", "47Bxx" ], "keywords": [ "abstract intersection theory", "hilbert space", "riemann zeta-function arise", "original riemann hypothesis", "nontrivial zeros" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2909B" } } }