{ "id": "0908.2641", "version": "v4", "published": "2009-08-18T21:13:25.000Z", "updated": "2011-08-29T14:29:59.000Z", "title": "Chain enumeration of $k$-divisible noncrossing partitions of classical types", "authors": [ "Jang Soo Kim" ], "comment": "23 pages, 9 figures, final version", "journal": "J. Combin. Theory Ser. A 118 (2011) 879-898", "categories": [ "math.CO" ], "abstract": "We give combinatorial proofs of the formulas for the number of multichains in the $k$-divisible noncrossing partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and M{\\\"u}ller. We also prove Armstrong's conjecture on the zeta polynomial of the poset of $k$-divisible noncrossing partitions of type $A$ invariant under a $180^\\circ$ rotation in the cyclic representation.", "revisions": [ { "version": "v4", "updated": "2011-08-29T14:29:59.000Z" } ], "analyses": { "subjects": [ "05A15", "05E15" ], "keywords": [ "divisible noncrossing partitions", "classical types", "chain enumeration", "armstrongs conjecture", "zeta polynomial" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2641K" } } }