{ "id": "0908.2473", "version": "v1", "published": "2009-08-18T01:22:21.000Z", "updated": "2009-08-18T01:22:21.000Z", "title": "Stochastic integral representation of the $L^{2}$ modulus of Brownian local time and a central limit theorem", "authors": [ "Yaozhong Hu", "David Nualart" ], "categories": [ "math.PR" ], "abstract": "The purpose of this note is to prove a central limit theorem for the $L^2$-modulus of continuity of the Brownian local time obtained in \\cite{CLMR}, using techniques of stochastic analysis. The main ingredients of the proof are an asymptotic version of Knight's theorem and the Clark-Ocone formula for the $L^2$-modulus of the Brownian local time.", "revisions": [ { "version": "v1", "updated": "2009-08-18T01:22:21.000Z" } ], "analyses": { "keywords": [ "brownian local time", "central limit theorem", "stochastic integral representation", "stochastic analysis", "main ingredients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2473H" } } }