{ "id": "0908.2264", "version": "v1", "published": "2009-08-16T21:28:45.000Z", "updated": "2009-08-16T21:28:45.000Z", "title": "Convergence of Ricci flow on $\\mathbb{R}^2$ to flat space", "authors": [ "James Isenberg", "Mohammad Javaheri" ], "comment": "9 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We prove that, starting at an initial metric $g(0)=e^{2u_0}(dx^2+dy^2)$ on $\\mathbb{R}^2$ with bounded scalar curvature and bounded $u_0$, the Ricci flow $\\partial_t g(t)=-R_{g(t)}g(t)$ converges to a flat metric on $\\mathbb{R}^2$.", "revisions": [ { "version": "v1", "updated": "2009-08-16T21:28:45.000Z" } ], "analyses": { "subjects": [ "53C44", "35G25" ], "keywords": [ "ricci flow", "flat space", "convergence", "flat metric" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2264I" } } }