{ "id": "0908.2107", "version": "v4", "published": "2009-08-14T17:26:02.000Z", "updated": "2011-08-09T19:27:40.000Z", "title": "Unitary equivalence of a matrix to its transpose", "authors": [ "Stephan Ramon Garcia", "James E. Tener" ], "comment": "22 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "Motivated by a problem of Halmos, we obtain a canonical decomposition for complex matrices which are unitarily equivalent to their transpose (UET). Surprisingly, the naive assertion that a matrix is UET if and only if it is unitarily equivalent to a complex symmetric matrix (i.e., $T = T^t$) holds for matrices 7x7 and smaller, but fails for matrices 8x8 and larger.", "revisions": [ { "version": "v4", "updated": "2011-08-09T19:27:40.000Z" } ], "analyses": { "subjects": [ "15A57", "47A30" ], "keywords": [ "unitary equivalence", "complex symmetric matrix", "unitarily equivalent", "complex matrices", "matrices 8x8" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.2107G" } } }