{ "id": "0908.1772", "version": "v5", "published": "2009-08-12T18:42:11.000Z", "updated": "2009-10-17T05:56:48.000Z", "title": "Some Probabilistic Results on Width Measures of Graphs", "authors": [ "Jakub Marecek" ], "comment": "Hopefully free of major issues", "categories": [ "math.CO" ], "abstract": "Fixed parameter tractable (FPT) algorithms run in time f(p(x)) poly(|x|), where f is an arbitrary function of some parameter p of the input x and poly is some polynomial function. Treewidth, branchwidth, cliquewidth, NLC-width, rankwidth, and booleanwidth are parameters often used in the design and analysis of such algorithms for problems on graphs. We show asymptotically almost surely (aas), there are Omega(n) lower bounds on the treewidth, branchwidth, cliquewidth, NLC-width, and rankwidth of graphs drawn from a simple random model. This raises important questions about the generality of FPT algorithms using the corresponding decompositions.", "revisions": [ { "version": "v5", "updated": "2009-10-17T05:56:48.000Z" } ], "analyses": { "subjects": [ "05C75", "68R10" ], "keywords": [ "width measures", "probabilistic results", "raises important questions", "simple random model", "polynomial function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.1772M" } } }