{ "id": "0908.1509", "version": "v2", "published": "2009-08-11T19:48:29.000Z", "updated": "2012-09-26T09:15:50.000Z", "title": "Sharp heat kernel estimates for relativistic stable processes in open sets", "authors": [ "Zhen-Qing Chen", "Panki Kim", "Renming Song" ], "comment": "Published in at http://dx.doi.org/10.1214/10-AOP611 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2012, Vol. 40, No. 1, 213-244", "doi": "10.1214/10-AOP611", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "In this paper, we establish sharp two-sided estimates for the transition densities of relativistic stable processes [i.e., for the heat kernels of the operators $m-(m^{2/\\alpha}-\\Delta)^{\\alpha/2}$] in $C^{1,1}$ open sets. Here $m>0$ and $\\alpha\\in(0,2)$. The estimates are uniform in $m\\in(0,M]$ for each fixed $M>0$. Letting $m\\downarrow0$, we recover the Dirichlet heat kernel estimates for $\\Delta^{\\alpha/2}:=-(-\\Delta)^{\\alpha/2}$ in $C^{1,1}$ open sets obtained in [14]. Sharp two-sided estimates are also obtained for Green functions of relativistic stable processes in bounded $C^{1,1}$ open sets.", "revisions": [ { "version": "v2", "updated": "2012-09-26T09:15:50.000Z" } ], "analyses": { "keywords": [ "relativistic stable processes", "sharp heat kernel estimates", "open sets", "dirichlet heat kernel estimates", "establish sharp two-sided estimates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.1509C" } } }