{ "id": "0908.1488", "version": "v1", "published": "2009-08-11T09:33:15.000Z", "updated": "2009-08-11T09:33:15.000Z", "title": "Stability on Kähler-Ricci flow, I", "authors": [ "Xiaohua Zhu" ], "comment": "27 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper, we prove that K\\\"ahler-Ricci flow converges to a K\\\"ahler-Einstein metric (or a K\\\"ahler-Ricci soliton) in the sense of Cheeger-Gromov as long as an initial K\\\"ahler metric is very closed to $g_{KE}$ (or $g_{KS}$) if a compact K\\\"ahler manifold with $c_1(M)>0$ admits a K\\\"ahler Einstein metric $g_{KE}$ (or a K\\\"ahler-Ricci soliton $g_{KS}$). The result improves Main Theorem in [TZ3] in the sense of stability of K\\\"ahler-Ricci flow.", "revisions": [ { "version": "v1", "updated": "2009-08-11T09:33:15.000Z" } ], "analyses": { "subjects": [ "53C55", "58E11" ], "keywords": [ "kähler-ricci flow", "flow converges", "einstein metric", "main theorem", "cheeger-gromov" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.1488Z" } } }