{ "id": "0908.0626", "version": "v1", "published": "2009-08-05T09:27:35.000Z", "updated": "2009-08-05T09:27:35.000Z", "title": "Algebraic cycles on an abelian variety", "authors": [ "Peter O'Sullivan" ], "comment": "73 pages", "categories": [ "math.AG" ], "abstract": "It is shown that to every Q-linear cycle \\bar\\alpha modulo numerical equivalence on an abelian variety A there is canonically associated a Q-linear cycle \\alpha modulo rational equivalence on A lying above \\bar\\alpha. The assignment \\bar\\alpha -> \\alpha respects the algebraic operations and pullback and push forward along homomorphisms of abelian varieties.", "revisions": [ { "version": "v1", "updated": "2009-08-05T09:27:35.000Z" } ], "analyses": { "subjects": [ "14C25", "14K05", "18D10" ], "keywords": [ "abelian variety", "algebraic cycles", "q-linear cycle", "modulo rational equivalence", "modulo numerical equivalence" ], "note": { "typesetting": "TeX", "pages": 73, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.0626O" } } }