{ "id": "0908.0556", "version": "v1", "published": "2009-08-04T21:56:01.000Z", "updated": "2009-08-04T21:56:01.000Z", "title": "Regularity of geodesic rays and Monge-Ampere equations", "authors": [ "D. H. Phong", "Jacob Sturm" ], "categories": [ "math.DG", "math.CV" ], "abstract": "It is shown that the geodesic rays constructed as limits of Bergman geodesics from a test configuration are always of class $C^{1,\\alpha}, 0<\\alpha<1$. An essential step is to establish that the rays can be extended as solutions of a Dirichlet problem for a Monge-Ampere equation on a Kaehler manifold which is compact.", "revisions": [ { "version": "v1", "updated": "2009-08-04T21:56:01.000Z" } ], "analyses": { "keywords": [ "monge-ampere equation", "regularity", "essential step", "dirichlet problem", "test configuration" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.0556P" } } }