{ "id": "0908.0356", "version": "v1", "published": "2009-08-03T22:12:48.000Z", "updated": "2009-08-03T22:12:48.000Z", "title": "On linear evolution equations with cylindrical Lévy noise", "authors": [ "Enrico Priola", "Jerzy Zabczyk" ], "categories": [ "math.AP", "math.PR" ], "abstract": "We study an infinite-dimensional Ornstein-Uhlenbeck process $(X_t)$ in a given Hilbert space $H$. This is driven by a cylindrical symmetric L\\'evy process without a Gaussian component and taking values in a Hilbert space $U$ which usually contains $H$. We give if and only if conditions under which $X_t$ takes values in $H$ for some $t>0$ or for all $t>0$. Moreover, we prove irreducibility for $(X_t)$.", "revisions": [ { "version": "v1", "updated": "2009-08-03T22:12:48.000Z" } ], "analyses": { "subjects": [ "47D07", "60H15", "60J75", "35R60" ], "keywords": [ "linear evolution equations", "cylindrical lévy noise", "hilbert space", "infinite-dimensional ornstein-uhlenbeck process", "cylindrical symmetric levy process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.0356P" } } }