{ "id": "0908.0096", "version": "v2", "published": "2009-08-01T18:54:54.000Z", "updated": "2009-09-04T18:53:02.000Z", "title": "A local-global principle for weak approximation on varieties over function fields", "authors": [ "Mike Roth", "Jason Michael Starr" ], "comment": "20 pages, corrected author names and affiliations", "categories": [ "math.AG" ], "abstract": "We present a new perspective on the weak approximation conjecture of Hassett and Tschinkel: formal sections of a rationally connected fibration over a curve can be approximated to arbitrary order by regular sections. The new approach involves the study of how ideal sheaves pullback to Cartier divisors.", "revisions": [ { "version": "v2", "updated": "2009-09-04T18:53:02.000Z" } ], "analyses": { "subjects": [ "14G05", "14C05" ], "keywords": [ "function fields", "local-global principle", "weak approximation conjecture", "ideal sheaves pullback", "cartier divisors" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0908.0096R" } } }