{ "id": "0907.4880", "version": "v2", "published": "2009-07-28T10:20:52.000Z", "updated": "2009-10-07T06:20:16.000Z", "title": "An involution for symmetry of hook length and part length of partitions", "authors": [ "Heesung Shin", "Jiang Zeng" ], "comment": "9 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "A {\\em pointed partition} of $n$ is a pair $(\\lambda, v)$ where $\\lambda\\vdash n$ and $v$ is a cell in its Ferrers diagram. We construct an involution on pointed partitions of $n$ exchanging \"hook length\" and \"part length\". This gives a bijective proof of a recent result of Bessenrodt and Han.", "revisions": [ { "version": "v2", "updated": "2009-10-07T06:20:16.000Z" } ], "analyses": { "keywords": [ "hook length", "part length", "involution", "pointed partition" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.4880S" } } }