{ "id": "0907.4357", "version": "v2", "published": "2009-07-24T18:41:00.000Z", "updated": "2009-10-16T23:32:32.000Z", "title": "A Solvability criterion for Navier-Stokes equations in high dimensions", "authors": [ "T. M. Viswanathan", "G. M. Viswanathan" ], "comment": "Fixed references, priority etc", "categories": [ "math.AP", "math.FA" ], "abstract": "We define the Ladyzhenskaya-Lions exponent $\\alpha_{\\rm {\\tiny \\sc l}} (n)=({2+n})/4$ for Navier-Stokes equations with dissipation $-(-\\Delta)^{\\alpha}$ in ${\\Bbb R}^n$, for all $n\\geq 2$. We review the proof of strong global solvability when $\\alpha\\geq \\alpha_{\\rm {\\tiny \\sc l}} (n)$, given smooth initial data. If the corresponding Euler equations for $n>2$ were to allow uncontrolled growth of the enstrophy ${1\\over 2} \\|\\nabla u \\|^2_{L^2}$, then no globally controlled coercive quantity is currently known to exist that can regularize solutions of the Navier-Stokes equations for $\\alpha<\\alpha_{\\rm {\\tiny \\sc l}} (n)$. The energy is critical under scale transformations only for $\\alpha=\\alpha_{\\rm {\\tiny \\sc l}} (n)$.", "revisions": [ { "version": "v2", "updated": "2009-10-16T23:32:32.000Z" } ], "analyses": { "keywords": [ "navier-stokes equations", "high dimensions", "solvability criterion", "smooth initial data", "strong global solvability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.4357V" } } }