{ "id": "0907.3984", "version": "v7", "published": "2009-07-23T16:16:04.000Z", "updated": "2010-03-20T01:49:07.000Z", "title": "B(l^p) is never amenable", "authors": [ "Volker Runde" ], "comment": "13 pages; final touchups", "journal": "J. Amer. Math. Soc. 23 (2010), 1175-1185", "categories": [ "math.FA", "math.OA" ], "abstract": "We show that, if $E$ is a Banach space with a basis satisfying a certain condition, then the Banach algebra $\\ell^\\infty({\\cal K}(\\ell^2 \\oplus E))$ is not amenable; in particular, this is true for $E = \\ell^p$ with $p \\in (1,\\infty)$. As a consequence, $\\ell^\\infty({\\cal K}(E))$ is not amenable for any infinite-dimensional ${\\cal L}^p$-space. This, in turn, entails the non-amenability of ${\\cal B}(\\ell^p(E))$ for any ${\\cal L}^p$-space $E$, so that, in particular, ${\\cal B}(\\ell^p)$ and ${\\cal B}(L^p[0,1])$ are not amenable.", "revisions": [ { "version": "v7", "updated": "2010-03-20T01:49:07.000Z" } ], "analyses": { "subjects": [ "47L10", "46B07", "46B45", "46H20" ], "keywords": [ "banach space", "banach algebra", "non-amenability" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.3984R" } } }