{ "id": "0907.3803", "version": "v1", "published": "2009-07-22T09:20:34.000Z", "updated": "2009-07-22T09:20:34.000Z", "title": "On the integral of Hardy's function", "authors": [ "Aleksandar Ivić" ], "comment": "7 pages", "journal": "Archiv der Mathematik 83(2004), 41-47", "categories": [ "math.NT" ], "abstract": "If $Z(t) = \\chi^{-1/2}(1/2+it)\\zeta(1/2+it)$ denotes Hardy's function, where $\\zeta(s) = \\chi(s)\\zeta(1-s)$ is the functional equation of the Riemann zeta-function, then it is proved that $$ \\int_0^T Z(t)\\d t = O_\\e(T^{1/4+\\e}). $$", "revisions": [ { "version": "v1", "updated": "2009-07-22T09:20:34.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "denotes hardys function", "functional equation", "riemann zeta-function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.3803I" } } }