{ "id": "0907.3766", "version": "v3", "published": "2009-07-22T02:37:50.000Z", "updated": "2010-02-02T07:36:29.000Z", "title": "Semiclassical Approach to Survival Probability at Quantum Phase Transitions", "authors": [ "Wen-ge Wang", "Pinquan Qin", "Lewei He", "Ping Wang" ], "comment": "4 pages, 3 figures; published version", "journal": "Phys.Rev.E, 81, 016214(1-5) (2010)", "categories": [ "quant-ph", "cond-mat.stat-mech", "nlin.CD" ], "abstract": "We study the decay of survival probability at quantum phase transitions (QPT). The semiclassical theory is found applicable in the vicinities of critical points with infinite degeneracy. The theory predicts a power law decay of the survival probability for relatively long times in systems with d=1 and an exponential decay in systems with sufficiently large d, where d is the degrees of freedom of the underlying classical dynamics. The semiclassical predictions are checked numerically in four models.", "revisions": [ { "version": "v3", "updated": "2010-02-02T07:36:29.000Z" } ], "analyses": { "subjects": [ "05.45.Mt", "05.70.Jk", "73.43.Nq", "64.60.Ht" ], "keywords": [ "quantum phase transitions", "survival probability", "semiclassical approach", "power law decay", "theory predicts" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "doi": "10.1103/PhysRevE.81.016214", "year": 2010, "month": "Jan", "volume": 81, "number": 1, "pages": "016214" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvE..81a6214W" } } }