{ "id": "0907.3705", "version": "v3", "published": "2009-07-21T19:09:41.000Z", "updated": "2010-03-12T23:01:02.000Z", "title": "On hitting all maximum cliques with an independent set", "authors": [ "Landon Rabern" ], "comment": "Added simple proof of Kostochka's lemma.", "categories": [ "math.CO" ], "abstract": "We prove that every graph $G$ for which $\\omega(G) \\geq 3/4(\\Delta(G) + 1)$, has an independent set $I$ such that $\\omega(G - I) < \\omega(G)$. It follows that a minimum counterexample $G$ to Reed's conjecture satisfies $\\omega(G) < 3/4(\\Delta(G) + 1)$ and hence also $\\chi(G) > \\lceil 7/6\\omega(G) \\rceil$. We also prove that if for every induced subgraph $H$ of $G$ we have $\\chi(H) \\leq \\max{\\lceil 7/6\\omega(H) \\rceil, \\lceil \\frac{\\omega(H) + \\Delta(H) + 1}{2}\\rceil}$, then we also have $\\chi(G) \\leq \\lceil \\frac{\\omega(G) + \\Delta(G) + 1}{2}\\rceil$. This gives a generic proof of the upper bound for line graphs of multigraphs proved by King et al.", "revisions": [ { "version": "v3", "updated": "2010-03-12T23:01:02.000Z" } ], "analyses": { "keywords": [ "independent set", "maximum cliques", "reeds conjecture satisfies", "minimum counterexample", "generic proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.3705R" } } }