{ "id": "0907.2730", "version": "v1", "published": "2009-07-16T02:04:22.000Z", "updated": "2009-07-16T02:04:22.000Z", "title": "Presentations of Graph Braid Groups", "authors": [ "Daniel Farley", "Lucas Sabalka" ], "comment": "27 pages, 11 figures", "doi": "10.1515/FORM.2011.086", "categories": [ "math.GR" ], "abstract": "Let G be a graph. The (unlabeled) configuration space of n points on G is the space of all n-element subsets of G. The fundamental group of such a configuration space is called a graph braid group. We use a version of discrete Morse theory to compute presentations of all graph braid groups, for all finite connected graphs G and all natural numbers n.", "revisions": [ { "version": "v1", "updated": "2009-07-16T02:04:22.000Z" } ], "analyses": { "subjects": [ "20F65", "20F36", "57M15", "55R80" ], "keywords": [ "graph braid group", "presentations", "configuration space", "discrete morse theory", "n-element subsets" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2730F" } } }