{ "id": "0907.2501", "version": "v2", "published": "2009-07-15T06:44:55.000Z", "updated": "2009-08-22T09:26:17.000Z", "title": "On the structure of Gaussian random variables", "authors": [ "Ciprian Tudor" ], "categories": [ "math.PR" ], "abstract": "We study when a given Gaussian random variable on a given probability space $(\\Omega, {\\cal{F}}, P) $ is equal almost surely to $\\beta_{1}$ where $\\beta $ is a Brownian motion defined on the same (or possibly extended) probability space. As a consequences of this result, we prove that the distribution of a random variable (satisfying in addition a certain property) in a finite sum of Wiener chaoses cannot be normal. This result also allows to understand better some characterization of the Gaussian variables obtained via Malliavin calculus.", "revisions": [ { "version": "v2", "updated": "2009-08-22T09:26:17.000Z" } ], "analyses": { "keywords": [ "gaussian random variable", "probability space", "brownian motion", "malliavin calculus", "finite sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2501T" } } }