{ "id": "0907.2421", "version": "v2", "published": "2009-07-14T18:17:25.000Z", "updated": "2010-09-15T02:12:45.000Z", "title": "Complete Minors, Independent Sets, and Chordal Graphs", "authors": [ "Jozsef Balogh", "John Lenz", "Hehui Wu" ], "journal": "Discuss. Math. Graph Theory. vol 31(4). 2011. 639-674", "categories": [ "math.CO" ], "abstract": "The Hadwiger number h(G) of a graph G is the maximum size of a complete minor of G. Hadwiger's Conjecture states that h(G) >= \\chi(G). Since \\chi(G) \\alpha(G) >= |V(G)|, Hadwiger's Conjecture implies that \\alpha(G) h(G) >= |V(G)|. We show that (2 \\alpha(G) - \\lceil log_t(t \\alpha(G)/2) \\rceil) h(G) \\geq |V(G)| where t is approximately 6.83. For graphs with \\alpha(G) \\geq 14, this improves on a recent result of Kawarabayashi and Song who showed (2 \\alpha(G) - 2) h(G) >= |V(G)| when \\alpha(G) >= 3.", "revisions": [ { "version": "v2", "updated": "2010-09-15T02:12:45.000Z" } ], "analyses": { "keywords": [ "complete minor", "independent sets", "chordal graphs", "hadwigers conjecture implies", "hadwigers conjecture states" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2421B" } } }