{ "id": "0907.1421", "version": "v2", "published": "2009-07-09T07:23:28.000Z", "updated": "2010-02-19T13:48:23.000Z", "title": "Irreducible Triangulations are Small", "authors": [ "Gwenaƫl Joret", "David R. Wood" ], "comment": "v2: Referees' comments incorporated", "journal": "J. Combinatorial Theory Series B 100(5):446-455, 2010", "doi": "10.1016/j.jctb.2010.01.004", "categories": [ "math.CO" ], "abstract": "A triangulation of a surface is \\emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus $g\\geq1$ has at most $13g-4$ vertices. The best previous bound was $171g-72$.", "revisions": [ { "version": "v2", "updated": "2010-02-19T13:48:23.000Z" } ], "analyses": { "subjects": [ "05C10", "05C35" ], "keywords": [ "irreducible triangulation", "contraction produces", "euler genus" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.1421J" } } }