{ "id": "0907.1250", "version": "v2", "published": "2009-07-07T16:11:44.000Z", "updated": "2014-02-25T18:05:34.000Z", "title": "An existence result for the infinity laplacian with non-homogeneous Neumann boundary conditions using Tug-of-War games", "authors": [ "Fernando Charro", "Jesus Garcia Azorero", "Julio D. Rossi" ], "comment": "This paper has been withdrawn due to some errors in some of the proofs", "categories": [ "math.AP" ], "abstract": "In this paper we show how to use a Tug-of-War game to obtain existence of a viscosity solution to the infinity laplacian with non-homogeneous mixed boundary conditions. For a Lipschitz and positive function $g$ there exists a viscosity solution of the mixed boundary value problem, $$ \\{\\begin{array}{ll} \\displaystyle -\\Delta_{\\infty}u(x)=0\\quad & \\text{in} \\Omega, \\displaystyle \\frac{\\partial u}{\\partial n}(x)= g (x)\\quad & \\text{on} \\Gamma_N, \\displaystyle u(x)= 0 \\quad & \\text{on} \\Gamma_D. \\end{array}. $$", "revisions": [ { "version": "v2", "updated": "2014-02-25T18:05:34.000Z" } ], "analyses": { "subjects": [ "35J60", "91A05", "49L25", "35J25" ], "keywords": [ "non-homogeneous neumann boundary conditions", "tug-of-war game", "infinity laplacian", "existence result", "viscosity solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.1250C" } } }