{ "id": "0907.0845", "version": "v1", "published": "2009-07-05T11:01:17.000Z", "updated": "2009-07-05T11:01:17.000Z", "title": "Ehrhart theory, Modular flow reciprocity, and the Tutte polynomial", "authors": [ "Felix Breuer", "Raman Sanyal" ], "comment": "14 pages, 5 figures", "journal": "Math. Z. 270 (2012), no. 1-2, 1-18", "doi": "10.1007/s00209-010-0782-6", "categories": [ "math.CO" ], "abstract": "Given an oriented graph G, the modular flow polynomial counts the number of nowhere-zero Z_k-flows of G. We give a description of the modular flow polynomial in terms of (open) Ehrhart polynomials of lattice polytopes. Using Ehrhart-Macdonald reciprocity we give a combinatorial interpretation for the values of the modular flow polynomial at negative arguments which answers a question of Beck and Zaslavsky (2006). Our construction extends to Z_l-tensions and we recover Stanley's reciprocity theorem for the chromatic polynomial. Combining the combinatorial reciprocity statements for flows and tensions, we give an enumerative interpretation for positive evaluations of the Tutte polynomial of G.", "revisions": [ { "version": "v1", "updated": "2009-07-05T11:01:17.000Z" } ], "analyses": { "subjects": [ "05C99" ], "keywords": [ "modular flow reciprocity", "tutte polynomial", "ehrhart theory", "modular flow polynomial counts", "stanleys reciprocity theorem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0845B" } } }