{ "id": "0907.0777", "version": "v2", "published": "2009-07-04T16:53:07.000Z", "updated": "2009-07-13T00:39:20.000Z", "title": "Some Exact Results on the Potts Model Partition Function in a Magnetic Field", "authors": [ "Shu-Chiuan Chang", "Robert Shrock" ], "comment": "5 pages, latex", "journal": "J. Phys. A 42, 385004 (2009)", "categories": [ "cond-mat.stat-mech", "math.CO" ], "abstract": "We consider the Potts model in a magnetic field on an arbitrary graph $G$. Using a formula of F. Y. Wu for the partition function $Z$ of this model as a sum over spanning subgraphs of $G$, we prove some properties of $Z$ concerning factorization, monotonicity, and zeros. A generalization of the Tutte polynomial is presented that corresponds to this partition function. In this context we formulate and discuss two weighted graph-coloring problems. We also give a general structural result for $Z$ for cyclic strip graphs.", "revisions": [ { "version": "v2", "updated": "2009-07-13T00:39:20.000Z" } ], "analyses": { "keywords": [ "potts model partition function", "magnetic field", "exact results", "cyclic strip graphs", "general structural result" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/42/38/385004", "journal": "Journal of Physics A Mathematical General", "year": 2009, "month": "Sep", "volume": 42, "number": 38, "pages": 385004 }, "note": { "typesetting": "LaTeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009JPhA...42L5004C" } } }