{ "id": "0907.0762", "version": "v1", "published": "2009-07-04T14:05:17.000Z", "updated": "2009-07-04T14:05:17.000Z", "title": "Poincaré inequality and exponential integrability of hitting times for linear diffusions", "authors": [ "D. Loukianova", "O. Loukianov", "Sh. Song" ], "categories": [ "math.PR" ], "abstract": "Let $X$ be a regular linear continuous positively recurrent Markov process with state space $\\R$, scale function $S$ and speed measure $m$. For $a\\in \\R$ denote B^+_a&=\\sup_{x\\geq a} \\m(]x,+\\infty[)(S(x)-S(a)) B^-_a&=\\sup_{x\\leq a} \\m(]-\\infty;x[)(S(a)-S(x)) We study some characteristic relations between $B^+_a$, $B^-_a$, the exponential moments of the hitting times $T_a$ of $X$, the Hardy and Poincar\\'e inequalities for the Dirichlet form associated with $X$. As a corollary, we establish the equivalence between the existence of exponential moments of the hitting times and the spectral gap of the generator of $X$.", "revisions": [ { "version": "v1", "updated": "2009-07-04T14:05:17.000Z" } ], "analyses": { "subjects": [ "60J25", "60J35", "60J60" ], "keywords": [ "hitting times", "linear diffusions", "exponential integrability", "inequality", "exponential moments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0762L" } } }