{ "id": "0907.0692", "version": "v1", "published": "2009-07-03T18:39:21.000Z", "updated": "2009-07-03T18:39:21.000Z", "title": "On the Diophantine equation x^4-q^4=py^5", "authors": [ "Diana Savin" ], "comment": "This paper was accepted for publication in Italian Journal of Pure and Applied Mathematics", "categories": [ "math.NT" ], "abstract": "In this paper we study the Diophantine equation $x^{4}-q^{4}=py^{5},$ with the following conditions: $p$ and $q$ are different prime natural numbers, $y$ is not divisible with $p$, $p\\equiv3$ (mod20), $q\\equiv4$ (mod5), $\\overline{p}$ is a generator of the group $(U(\\textbf{Z}_{q^{4}}),\\cdot)$, $(x,y)=1$, 2 is a 5-power residue mod $q$.", "revisions": [ { "version": "v1", "updated": "2009-07-03T18:39:21.000Z" } ], "analyses": { "subjects": [ "11D41" ], "keywords": [ "diophantine equation", "prime natural numbers", "residue mod", "conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0692S" } } }