{ "id": "0907.0491", "version": "v2", "published": "2009-07-02T21:31:49.000Z", "updated": "2011-01-13T03:38:16.000Z", "title": "Bockstein basis and resolution theorems in extension theory", "authors": [ "Vera Tonić" ], "comment": "23 pages", "journal": "TOPOLOGY AND ITS APPLICATIONS 157 (2010) 674-691", "categories": [ "math.GT", "math.AT", "math.GN" ], "abstract": "We prove a generalization of the Edwards-Walsh Resolution Theorem: Theorem: Let G be an abelian group for which $P_G$ equals the set of all primes $\\mathbb{P}$, where $P_G=\\{p \\in \\mathbb{P}: \\Z_{(p)}\\in$ Bockstein Basis $ \\sigma(G)\\}$. Let n in N and let K be a connected CW-complex with $\\pi_n(K)\\cong G$, $\\pi_k(K)\\cong 0$ for $0\\leq k< n$. Then for every compact metrizable space X with $X\\tau K$ (i.e., with $K$ an absolute extensor for $X$), there exists a compact metrizable space Z and a surjective map $\\pi: Z \\to X$ such that (a) $\\pi$ is cell-like, (b) $\\dim Z \\leq n$, and (c) $Z\\tau K$.", "revisions": [ { "version": "v2", "updated": "2011-01-13T03:38:16.000Z" } ], "analyses": { "subjects": [ "55M10", "54F45", "55P20", "54C20" ], "keywords": [ "bockstein basis", "extension theory", "compact metrizable space", "edwards-walsh resolution theorem", "abelian group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0491T" } } }