{ "id": "0907.0350", "version": "v1", "published": "2009-07-02T11:53:52.000Z", "updated": "2009-07-02T11:53:52.000Z", "title": "Composition operators on Hardy spaces of a half plane", "authors": [ "Sam Elliott", "Michael T. Jury" ], "doi": "10.1112/blms/bdr110", "categories": [ "math.FA", "math.CV" ], "abstract": "We prove that a composition operator is bounded on the Hardy space $H^2$ of the right half-plane if and only if the inducing map fixes the point at infinity non-tangentially, and has a finite angular derivative $\\lambda$ there. In this case the norm, essential norm, and spectral radius of the operator are all equal to $\\sqrt{\\lambda}$.", "revisions": [ { "version": "v1", "updated": "2009-07-02T11:53:52.000Z" } ], "analyses": { "subjects": [ "47B33" ], "keywords": [ "composition operator", "hardy space", "half plane", "spectral radius", "right half-plane" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0350E" } } }