{ "id": "0907.0212", "version": "v2", "published": "2009-07-01T17:46:06.000Z", "updated": "2010-06-01T22:24:35.000Z", "title": "A Riemann singularity theorem for integral curves", "authors": [ "Sebastian Casalaina-Martin", "Jesse Leo Kass" ], "comment": "23 pages, AMS Latex, improved exposition, to appear in the Amer. J. Math", "categories": [ "math.AG" ], "abstract": "We prove results generalizing the classical Riemann Singularity Theorem to the case of integral, singular curves. The main result is a computation of the multiplicity of the theta divisor of an integral, nodal curve at an arbitrary point. We also conjecture a general formula for the multiplicity of points on the theta divisor of a singular integral curve and present some evidence for this conjecture. Our results give a partial answer to a question posed by Lucia Caporaso in a recent paper.", "revisions": [ { "version": "v2", "updated": "2010-06-01T22:24:35.000Z" } ], "analyses": { "subjects": [ "14H40", "14H42", "14H20", "14K25" ], "keywords": [ "theta divisor", "classical riemann singularity theorem", "singular integral curve", "arbitrary point", "singular curves" ], "note": { "typesetting": "LaTeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0212C" } } }