{ "id": "0907.0031", "version": "v1", "published": "2009-06-30T21:50:57.000Z", "updated": "2009-06-30T21:50:57.000Z", "title": "New bases of some Hecke algebras via Soergel bimodules", "authors": [ "Nicolas Libedinsky" ], "comment": "25 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "For extra-large Coxeter systems (m(s,r)>3), we construct a natural and explicit set of Soergel bimodules D={D_w}_{w\\in W} such that each D_w contains as a direct summand (or is equal to) the indecomposable Soergel bimodule B_w. When decategorified, we prove that D gives rise to a set {d_w}_{w\\in W} that is actually a basis of the Hecke algebra. This basis is close to the Kazhdan-Lusztig basis and satisfies a ``positivity condition''.", "revisions": [ { "version": "v1", "updated": "2009-06-30T21:50:57.000Z" } ], "analyses": { "keywords": [ "hecke algebra", "extra-large coxeter systems", "direct summand", "indecomposable soergel bimodule", "explicit set" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.0031L" } } }