{ "id": "0906.5375", "version": "v3", "published": "2009-06-29T21:33:48.000Z", "updated": "2009-11-30T10:33:29.000Z", "title": "Quasi-Invariant measures, escape rates and the effect of the hole", "authors": [ "Wael Bahsoun", "Christopher Bose" ], "comment": "15 pages", "categories": [ "math.DS" ], "abstract": "Let $T$ be a piecewise expanding interval map and $T_H$ be an abstract perturbation of $T$ into an interval map with a hole. Given a number $\\ell$, $0<\\ell<1$, we compute an upper-bound on the size of a hole needed for the existence of an absolutely continuous conditionally invariant measure (accim) with escape rate not greater than $-\\ln(1-\\ell)$. The two main ingredients of our approach are Ulam's method and an abstract perturbation result of Keller and Liverani.", "revisions": [ { "version": "v3", "updated": "2009-11-30T10:33:29.000Z" } ], "analyses": { "subjects": [ "37A05", "37E05" ], "keywords": [ "escape rate", "quasi-invariant measures", "abstract perturbation result", "piecewise expanding interval map", "ulams method" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.5375B" } } }