{ "id": "0906.5140", "version": "v1", "published": "2009-06-28T15:07:54.000Z", "updated": "2009-06-28T15:07:54.000Z", "title": "Well-posedness for fractional Navier-Stokes equations in critical spaces close to $\\dot{B}^{-(2β-1)}_{\\infty,\\infty}(\\mathbb{R}^{n})$", "authors": [ "Zhichun Zhai" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we prove the well-posedness for the fractional Navier-Stokes equations in critical spaces $G^{-(2\\beta-1)}_{n}(\\mathbb{R}^{n})$ and $BMO^{-(2\\beta-1)}(\\mathbb{R}^{n}).$ Both of them are close to the largest critical space $\\dot{B}^{-(2\\beta-1)}_{\\infty,\\infty}(\\mathbb{R}^{n}).$ In $G^{-(2\\beta-1)}_{n}(\\mathbb{R}^{n}),$ we establish the well-posedness based on a priori estimates for the fractional Navier-Stokes equations in Besov spaces. To obtain the well-posedness in $BMO^{-(2\\beta-1)}(\\mathbb{R}^{n}),$ we find a relationship between $Q_{\\alpha;\\infty}^{\\beta,-1}(\\mathbb{R}^{n})$ and $BMO(\\mathbb{R}^{n})$ by giving an equivalent characterization of $BMO^{-\\zeta}(\\mathbb{R}^{n}).$", "revisions": [ { "version": "v1", "updated": "2009-06-28T15:07:54.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "42B35", "46E30" ], "keywords": [ "fractional navier-stokes equations", "critical spaces close", "well-posedness", "largest critical space", "priori estimates" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.5140Z" } } }