{ "id": "0906.4901", "version": "v2", "published": "2009-06-26T10:53:52.000Z", "updated": "2009-09-01T05:35:33.000Z", "title": "Lie quasi-states", "authors": [ "Michael Entov", "Leonid Polterovich" ], "comment": "Minor corrections", "categories": [ "math.RT", "math.SG" ], "abstract": "Lie quasi-states on a real Lie algebra are functionals which are linear on any abelian subalgebra. We show that on the symplectic Lie algebra of rank at least 3 there is only one continuous non-linear Lie quasi-state (up to a scalar factor, modulo linear functionals). It is related to the asymptotic Maslov index of paths of symplectic matrices.", "revisions": [ { "version": "v2", "updated": "2009-09-01T05:35:33.000Z" } ], "analyses": { "subjects": [ "17B99", "53D12" ], "keywords": [ "real lie algebra", "symplectic lie algebra", "asymptotic maslov index", "continuous non-linear lie quasi-state", "modulo linear functionals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4901E" } } }