{ "id": "0906.4891", "version": "v1", "published": "2009-06-26T09:56:14.000Z", "updated": "2009-06-26T09:56:14.000Z", "title": "On a characterization of locally finite groups in terms of linear cellular automata", "authors": [ "Tullio Ceccherini-Silberstein", "Michel Coornaert" ], "journal": "J. Cell. Autom. 6 (2011), 207-213", "categories": [ "math.GR", "math.DS" ], "abstract": "We prove that a group $G$ is locally finite if and only if every surjective real (or complex) linear cellular automaton with finite-dimensional alphabet over $G$ is injective.", "revisions": [ { "version": "v1", "updated": "2009-06-26T09:56:14.000Z" } ], "analyses": { "subjects": [ "20F50", "37B15", "68Q80" ], "keywords": [ "linear cellular automaton", "locally finite groups", "characterization", "finite-dimensional alphabet" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4891C" } } }