{ "id": "0906.4847", "version": "v2", "published": "2009-06-26T06:29:58.000Z", "updated": "2009-10-12T19:16:24.000Z", "title": "Recurrence for random dynamical systems", "authors": [ "Philippe Marie", "Jerome Rousseau" ], "categories": [ "math.DS" ], "abstract": "This paper is a first step in the study of the recurrence behavior in random dynamical systems and randomly perturbed dynamical systems. In particular we define a concept of quenched and annealed return times for systems generated by the composition of random maps. We moreover prove that for super-polynomially mixing systems, the random recurrence rate is equal to the local dimension of the stationary measure.", "revisions": [ { "version": "v2", "updated": "2009-10-12T19:16:24.000Z" } ], "analyses": { "subjects": [ "37C45", "37B20", "37A25" ], "keywords": [ "random dynamical systems", "random recurrence rate", "local dimension", "first step", "annealed return times" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4847M" } } }