{ "id": "0906.4245", "version": "v1", "published": "2009-06-23T12:53:57.000Z", "updated": "2009-06-23T12:53:57.000Z", "title": "On a Generalization of Alexander Polynomial for Long Virtual Knots", "authors": [ "Afanasiev Denis" ], "comment": "5 pages, 1 figure", "categories": [ "math.GT" ], "abstract": "We construct new invariant polynomial for long virtual knots. It is a generalization of Alexander polynomial. We designate it by $\\zeta$ meaning an analogy with $\\zeta$-polynomial for virtual links. A degree of $\\zeta$-polynomial estimates a virtual crossing number. We describe some application of $\\zeta$-polynomial for the study of minimal long virtual diagrams with respect number of virtual crossings.", "revisions": [ { "version": "v1", "updated": "2009-06-23T12:53:57.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "long virtual knots", "alexander polynomial", "generalization", "minimal long virtual diagrams", "respect number" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4245D" } } }