{ "id": "0906.4142", "version": "v3", "published": "2009-06-22T23:01:30.000Z", "updated": "2011-03-30T21:19:03.000Z", "title": "The maximum number of cliques in a graph embedded in a surface", "authors": [ "Vida Dujmović", "Gašper Fijavž", "Gwenaël Joret", "Thom Sulanke", "David R. Wood" ], "journal": "European J. Combinatorics 32.8:1244-1252, 2011", "doi": "10.1016/j.ejc.2011.04.001", "categories": [ "math.CO" ], "abstract": "This paper studies the following question: Given a surface $\\Sigma$ and an integer $n$, what is the maximum number of cliques in an $n$-vertex graph embeddable in $\\Sigma$? We characterise the extremal graphs for this question, and prove that the answer is between $8(n-\\omega)+2^{\\omega}$ and $8n+{3/2} 2^{\\omega}+o(2^{\\omega})$, where $\\omega$ is the maximum integer such that the complete graph $K_\\omega$ embeds in $\\Sigma$. For the surfaces $\\mathbb{S}_0$, $\\mathbb{S}_1$, $\\mathbb{S}_2$, $\\mathbb{N}_1$, $\\mathbb{N}_2$, $\\mathbb{N}_3$ and $\\mathbb{N}_4$ we establish an exact answer.", "revisions": [ { "version": "v3", "updated": "2011-03-30T21:19:03.000Z" } ], "analyses": { "subjects": [ "05C10", "05C35" ], "keywords": [ "maximum number", "exact answer", "complete graph", "paper studies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4142D" } } }