{ "id": "0906.4080", "version": "v4", "published": "2009-06-22T19:53:16.000Z", "updated": "2010-10-17T16:15:27.000Z", "title": "Uniqueness of electrical currents in a network of finite total resistance", "authors": [ "Agelos Georgakopoulos" ], "doi": "10.1112/jlms/jdq034", "categories": [ "math.CO" ], "abstract": "We show that if the sum of the resistances of an electrical network $N$ is finite, then there is a unique electrical current in $N$ provided we do not allow, in a sense, any flow to escape to infinity.", "revisions": [ { "version": "v4", "updated": "2010-10-17T16:15:27.000Z" } ], "analyses": { "subjects": [ "05C99", "05C21", "05C80" ], "keywords": [ "finite total resistance", "uniqueness", "unique electrical current", "electrical network" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4080G" } } }