{ "id": "0906.3574", "version": "v1", "published": "2009-06-19T05:28:35.000Z", "updated": "2009-06-19T05:28:35.000Z", "title": "Magma Proof of Strict Inequalities for Minimal Degrees of Finite Groups", "authors": [ "Scott H. Murray", "Neil Saunders" ], "comment": "4 pages", "categories": [ "math.GR" ], "abstract": "The minimal faithful permutation degree of a finite group $G$, denote by $\\mu(G)$ is the least non-negative integer $n$ such that $G$ embeds inside the symmetric group $\\Sym(n)$. In this paper, we outline a Magma proof that 10 is the smallest degree for which there are groups $G$ and $H$ such that $\\mu(G \\times H) < \\mu(G)+ \\mu(H)$.", "revisions": [ { "version": "v1", "updated": "2009-06-19T05:28:35.000Z" } ], "analyses": { "subjects": [ "20B35" ], "keywords": [ "finite group", "magma proof", "strict inequalities", "minimal degrees", "minimal faithful permutation degree" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.3574M" } } }