{ "id": "0906.3396", "version": "v1", "published": "2009-06-18T10:00:56.000Z", "updated": "2009-06-18T10:00:56.000Z", "title": "Symmetry reduction and superintegrable Hamiltonian systems", "authors": [ "M. A. Rodriguez", "P. Tempesta", "P. Winternitz" ], "comment": "9 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We construct complete sets of invariant quantities that are integrals of motion for two Hamiltonian systems obtained through a reduction procedure, thus proving that these systems are maximally superintegrable. We also discuss the reduction method used in this article and its possible generalization to other maximally superintegrable systems.", "revisions": [ { "version": "v1", "updated": "2009-06-18T10:00:56.000Z" } ], "analyses": { "subjects": [ "70H33", "22E70" ], "keywords": [ "superintegrable hamiltonian systems", "symmetry reduction", "construct complete sets", "invariant quantities", "reduction procedure" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1742-6596/175/1/012013", "journal": "Journal of Physics Conference Series", "year": 2009, "month": "Jun", "volume": 175, "number": 1, "pages": "012013" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009JPhCS.175a2013R" } } }