{ "id": "0906.3384", "version": "v1", "published": "2009-06-18T09:19:52.000Z", "updated": "2009-06-18T09:19:52.000Z", "title": "Energy dispersed large data wave maps in 2+1 dimensions", "authors": [ "Jacob Sterbenz", "Daniel Tataru" ], "comment": "89 pages", "categories": [ "math.AP" ], "abstract": "In this article we consider large data Wave-Maps from $\\mathbb{R}^{2+1}$ into a compact Riemannian manifold $(\\mathcal{M},g)$, and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. In a companion article we use these results in order to establish a full regularity theory for large data Wave-Maps.", "revisions": [ { "version": "v1", "updated": "2009-06-18T09:19:52.000Z" } ], "analyses": { "subjects": [ "35L70" ], "keywords": [ "dispersed large data wave maps", "energy dispersed large data wave", "large data wave-maps", "dimensions", "compact riemannian manifold" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-010-1061-4", "journal": "Communications in Mathematical Physics", "year": 2010, "month": "Aug", "volume": 298, "number": 1, "pages": 139 }, "note": { "typesetting": "TeX", "pages": 89, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010CMaPh.298..139S" } } }