{ "id": "0906.3266", "version": "v1", "published": "2009-06-17T18:10:54.000Z", "updated": "2009-06-17T18:10:54.000Z", "title": "Convergence of Polynomial Ergodic Averages of Several Variables for some Commuting Transformations", "authors": [ "Michael C. R. Johnson" ], "categories": [ "math.DS" ], "abstract": "Let $(X,\\mathcal{B},\\mu)$ be a probability space and let $T_1,..., T_l$ be $l$ commuting invertible measure preserving transformations \\linebreak of $X$. We show that if $T_1^{c_1} ... T_l^{c_l}$ is ergodic for each $(c_1,...,c_l)\\neq (0,...,0)$, then the averages $\\frac{1}{|\\Phi_N|}\\sum_{u\\in\\Phi_N}\\prod_{i=1}^r T_1^{p_{i1}(u)}... T_l^{p_{il}(u)}f_i$ converge in $L^2(\\mu)$ for all polynomials $p_{ij}\\colon \\mathbb{Z}^d\\to\\mathbb{Z}$, all $f_i\\in L^{\\infty}(\\mu)$, and all F{\\o}lner sequences $\\{\\Phi_N\\}_{N=1}^{\\infty}$ in $\\mathbb{Z}^d$.", "revisions": [ { "version": "v1", "updated": "2009-06-17T18:10:54.000Z" } ], "analyses": { "keywords": [ "polynomial ergodic averages", "commuting transformations", "convergence", "probability space", "commuting invertible measure preserving transformations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.3266J" } } }