{ "id": "0906.3211", "version": "v2", "published": "2009-06-17T15:23:11.000Z", "updated": "2009-06-21T10:40:32.000Z", "title": "Inverse scattering with non-overdetermined data", "authors": [ "A. G. Ramm" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Let $A(\\beta,\\alpha,k)$ be the scattering amplitude corresponding to a real-valued potential which vanishes outside of a bounded domain $D\\subset \\R^3$. The unit vector $\\alpha$ is the direction of the incident plane wave, the unit vector $\\beta$ is the direction of the scattered wave, $k>0$ is the wave number. The governing equation for the waves is $[\\nabla^2+k^2-q(x)]u=0$ in $\\R^3$. For a suitable class of potentials it is proved that if $A_{q_1}(-\\beta,\\beta,k)=A_{q_2}(-\\beta,\\beta,k)$ $\\forall \\beta\\in S^2,$ $\\forall k\\in (k_0,k_1),$ and $q_1,$ $q_2\\in M$, then $q_1=q_2$. This is a uniqueness theorem for the solution to the inverse scattering problem with backscattering data. It is also proved for this class of potentials that if $A_{q_1}(\\beta,\\alpha_0,k)=A_{q_2}(\\beta,\\alpha_0,k)$ $\\forall \\beta\\in S^2_1,$ $\\forall k\\in (k_0,k_1),$ and $q_1,$ $q_2\\in M$,then $q_1=q_2$. Here $S^2_1$ is an arbitrarily small open subset of $S^2$, and $|k_0-k_1|>0$ is arbitrarily small.", "revisions": [ { "version": "v2", "updated": "2009-06-21T10:40:32.000Z" } ], "analyses": { "subjects": [ "35R30", "81U40" ], "keywords": [ "non-overdetermined data", "unit vector", "incident plane wave", "arbitrarily small open subset", "wave number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.3211R" } } }