{ "id": "0906.2472", "version": "v1", "published": "2009-06-13T12:21:43.000Z", "updated": "2009-06-13T12:21:43.000Z", "title": "Local rigidity of hyperbolic manifolds with geodesic boundary", "authors": [ "Steven P. Kerckhoff", "Peter A. Storm" ], "comment": "30 pages", "doi": "10.1112/jtopol/jts018", "categories": [ "math.GT", "math.DG" ], "abstract": "Let W be a compact hyperbolic n-manifold with totally geodesic boundary. We prove that if n>3 then the holonomy representation of pi_1 (W) into the isometry group of hyperbolic n-space is infinitesimally rigid.", "revisions": [ { "version": "v1", "updated": "2009-06-13T12:21:43.000Z" } ], "analyses": { "subjects": [ "20H10", "22E40" ], "keywords": [ "hyperbolic manifolds", "local rigidity", "compact hyperbolic n-manifold", "hyperbolic n-space", "totally geodesic boundary" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.2472K" } } }