{ "id": "0906.1246", "version": "v1", "published": "2009-06-06T04:28:54.000Z", "updated": "2009-06-06T04:28:54.000Z", "title": "Ruled minimal surfaces in the three dimensional Heisenberg group", "authors": [ "Young Wook Kim", "Sung-Eun Koh", "Hyung Yong Lee", "Heayong Shin", "Seong-Deog Yang" ], "comment": "18 pages", "categories": [ "math.DG" ], "abstract": "It is shown that parts of planes, helicoids and hyperbolic paraboloids are the only minimal surfaces ruled by geodesics in the three dimensional Riemannian Heisenberg group. It is also shown that they are the only surfaces in the three dimensional Heisenberg group whose mean curvature is zero with respect to both of the standard Riemannian metric and the standard Lorentzian metric.", "revisions": [ { "version": "v1", "updated": "2009-06-06T04:28:54.000Z" } ], "analyses": { "subjects": [ "53A35" ], "keywords": [ "dimensional heisenberg group", "ruled minimal surfaces", "dimensional riemannian heisenberg group", "standard riemannian metric", "standard lorentzian metric" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.1246K" } } }