{ "id": "0906.0669", "version": "v2", "published": "2009-06-03T09:34:48.000Z", "updated": "2011-02-04T10:52:23.000Z", "title": "A note on maximal solutions of nonlinear parabolic equations with absorption", "authors": [ "Laurent Veron" ], "comment": "\\`A para\\^itre \\`a Asymptotic Analysis", "categories": [ "math.AP" ], "abstract": "If $\\Omega$ is a bounded domain in $\\mathbb R^N$ and $f$ a continuous increasing function satisfying a super linear growth condition at infinity, we study the existence and uniqueness of solutions for the problem (P): $\\partial_tu-\\Delta u+f(u)=0$ in $Q_\\infty^\\Omega:=\\Omega\\times (0,\\infty)$, $u=\\infty$ on the parabolic boundary $\\partial_{p}Q$. We prove that in most cases, the existence and uniqueness is reduced to the same property for the associated stationary equation in $\\Omega$.", "revisions": [ { "version": "v2", "updated": "2011-02-04T10:52:23.000Z" } ], "analyses": { "keywords": [ "nonlinear parabolic equations", "maximal solutions", "absorption", "super linear growth condition", "uniqueness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.0669V" } } }