{ "id": "0906.0377", "version": "v1", "published": "2009-06-01T20:40:30.000Z", "updated": "2009-06-01T20:40:30.000Z", "title": "A Bijective Proof of a Major Index Theorem of Garsia and Gessel", "authors": [ "Moti Novick" ], "categories": [ "math.CO" ], "abstract": "In this paper we provide a bijective proof of a theorem of Garsia and Gessel describing the generating function of the major index over the set of all permutations of [n]={1,...,n} which are shuffles of given disjoint ordered sequences whose union is [n]. Two special cases are singled out: If the single element j is inserted into any permutation P of the remaining elements of [n], then the theorem states that inserting j into P increases the major index of P by some element of {0,1,...,n-1}, the increase determined uniquely by the index of insertion. We provide a direct proof of this fact using an algorithm which calculates the increase at each index; this in turn leads to a bijective proof of MacMahon's 1916 result on the equidistribution of major index and inversion number over S_n. Using this special case we prove the general case of the theorem by establishing a bijection between shuffles of ordered sequences and a certain set of partitions. In the second special case of interest, Garsia and Gessel's theorem provides a proof of the equidistribution of major index and inversion number over inverse descent classes, a result first proved bijectively by Foata and Schutzenberger in 1978. We provide, based on the method of our first proof, another bijective proof of this result.", "revisions": [ { "version": "v1", "updated": "2009-06-01T20:40:30.000Z" } ], "analyses": { "keywords": [ "bijective proof", "major index theorem", "inversion number", "second special case", "ordered sequences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.0377N" } } }